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a b s t r a c t

This paper presents a model to assess the contribution of Human and Organizational Factor (HOF) to
accidents. The proposed model is made up of two phases. The first phase is the qualitative analysis of
HOF responsible for accidents, which utilizes Human Factors Analysis and Classification System (HFACS)
to seek out latent HOFs. The hierarchy of HOFs identified in the first phase provides inputs for the analysis
in the second phase, which is a quantitative analysis using Bayesian Network (BN). BN enhances the ability
eywords:
ayesian Network
uzzy analytical hierarchy process
uman and Organizational Factor
uman Factors Analysis and Classification
ystem

of HFACS by allowing investigators or domain experts to measure the degree of relationships among the
HOFs. In order to estimate the conditional probabilities of BN, fuzzy analytical hierarchy process and
decomposition method are applied in the model. Case studies show that the model is capable of seeking
out critical latent human and organizational errors and carrying out quantitative analysis of accidents.
Thereafter, corresponding safety prevention measures are derived.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

It has been widely recognized that Human and Organizational
actors (HOF) are leading causes of most accidents. A report of
nited States Coast Guard also points out that 75–96% of casual-

ies are due to some forms of human errors [1]. In this aspect, it
s emphasized that HOF is one of the most important contributory
spects to the causation and avoidance of accident. The prevalence
f HOF in accidents warrants the need to incorporate HOF analysis
n accident investigations, so that valuable measures to prevent
imilar accidents from recurring can be derived. Feedbacks and
essons learnt from accident analysis will provide help on improv-
ng safety climate and preventing accidents. Effectively preventing
ccidents requires the use of accident analysis models that include
he effect of HOF [2].

Many models have been established that discuss HOF in
ccidents, e.g. Reason’s Swiss Cheese Model, Human Factors
nalysis and Classification System (HFACS), Classifications of Socio-

echnical Systems involved in safety control, Systems-Theoretic
ccident Model and Processes [3]. An inductive reasoning approach

s employed to develop an Aviation System Risk Model (ASRM)
o build probabilistic causal models representing the safety risk

∗ Corresponding author at: Department of Industrial & Systems Engineering,
ational University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore. Tel.:
65 96184069.

E-mail addresses: isewy@nus.edu.sg, lily3lily3@163.com (Y.F. Wang).

304-3894/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2011.04.040
involved in aviation accidents [4]. ASRM model is based on revised
HFACS and reflects the failure/error levels imposed by HFACS tax-
onomy [5]. A system dynamics model for the assessment of the
HOFs in a nuclear power plant is developed, which can show cause
and effect relationships among factors and quantify the HOFs [6].
A set of principles for organizational safety risk analysis are pro-
posed to integrate the technical risk analysis models with social
aspects of safety prediction models [7]. Based on those princi-
ples, probabilistic risk assessment model is extended to include
the effects of organizational factors as the fundamental causes
of accidents [8]. Mohaghegh and Mosleh propose organizational
safety causal analysis model and present a Bayesian approach to
operate the multi-dimensional measurements [9]. An organiza-
tional factor framework is developed for the quantification of the
impact of organizational factor on risk, which also chooses Bayesian
Network (BN) as a quantitative modeling technique based on an
element-by-element evaluation of the existing framework [10].
However, this model is attributed to specific leak events without
using extensive resources and does not focus on the risk-reducing
measures.

A review of different HOF models resulted in the selection of
HFACS for HOF analysis in this paper. HFACS is a validated and
reliable human error model [11], which is utilized intensively
in investigating accidents [12,13]. The Human Factors Investiga-
tion Tool [14] and Curtailing Accidents by Managing Social Capital

[15] are recognized as relatively new tools built based on the
HFACS model. The above literatures mainly focus on the construc-
tion of complicated conceptual model, whereas quantitative risk
assessment is not enough. Adding quantification analysis to the

dx.doi.org/10.1016/j.jhazmat.2011.04.040
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
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this step, the BN is systematically constructed according to the
hierarchal structure of HFACS.
0 Y.F. Wang et al. / Journal of Ha

ualitative HFACS model could enhance the accident investiga-
ion process. For instance, HFACS model can be integrated with
N, which is capable of providing quantitative interrelationships
s well as calculating numerical values of occurrence probability
16].

The earliest research in the integration of HFACS with BN
ppeared in Luxhøj’s work [17,18], which construct BBN model
tilizing the HFACS taxonomy as a basis. They discussed the need
or new methods of hazard, risk and uncertainty modeling [19].
hey indicated that the combination of fuzzy sets and BNs is help-
ul for dealing with the ambiguity regarding the observed evidence
ssociated with some variables. Lu also establishes the causal rela-
ionships of accidents by using BN from the perspective of HOFs and
ries to apply the fuzzy semantics and the integral value method
o quantify the conditional probability table (CPT) of basic events
20]. However, the expert elicitations of CPT and quantitative infer-
nce of BN may not be enough. In order to modify the deficiency of
heir work, fuzzy analytical hierarchy process (AHP) method and
ecomposition method are adopted in this paper to compensate
ncertainty and vagueness in the experts’ judgment of BN. With
egards to the elicitation of CPT in BN, it is worthwhile to note
hat reliable HOF data are generally absent [21]. In such situa-
ions, CPT can be elicited using judgments from domain experts.
owever, experts may find it difficult to come up with precise
robability values for the relationships between nodes [22]. Since
N is an effective tool for updating prior probabilities and fuzzy
et theory is a useful tool for analyzing subjective information,
he two theories can be combined for the updates of prior prob-
bilities and the calculation of posterior probabilities [23]. Fuzzy
HP can tackle fuzziness and uncertainty of vague decision-making
ore efficiently using fuzzy sets, membership functions, and fuzzy

umbers [24].
There are many fuzzy AHP methods and applications in liter-

tures. The earliest work is that a fuzzy logarithmic least squares
ethod (LLSM) is suggested to obtain relative weights from a tri-

ngular fuzzy comparison matrix [25]. A constrained nonlinear
ptimization model is later proposed to modify the fuzzy LLSM [26].
n extent analysis method, which has been employed in a number
f applications due to its computational simplicity, is introduced
y Chang [27]. However, such a method is found unable to derive
he true weights from a fuzzy comparison matrix. It is improved by

odifying the fuzzy LLSM, which can directly derive normalized
riangular fuzzy weights for both complete and incomplete trian-
ular fuzzy comparison matrices [28]. In another study, fuzzy AHP
s combined with HFACS to prioritize the list of HOFs involved in an
ccident [29]. Fuzzy AHP and Fuzzy Data Envelopment Analysis are
pplied to calculate the relative fuzzy weight, which is integrated
ith BN to create the risk evaluation models [30]. From above lit-

rature reviews, we can see that the fuzzy AHP method is an ideal
ool for relative weights elicitation, which can be used to elicit the
PT of BN.

In this paper, a quantitative accident analysis model is presented
y integrating HFACS and BN with fuzzy AHP to assess the contri-
ution of HOFs in accidents. This application model exploits the
dvantages of each method and modifies the existing methods. As
n approach to compensate the lack of quantitative analysis within
FACS, the integration of BN and fuzzy AHP is selected to estimate
uantitatively the contribution of HOFs to accidents. At the same
ime, the 4-level structure of HFACS provides a systematic guideline
or the construction of BN to model how HOFs are related to form
network. The rest of this paper is organized as follows: Section 2
resents a two-phase accident analysis model for the systematical
ssessment of HOFs in both qualitative and quantitative manner.
n Section 3, two cases are analyzed to demonstrate the application

f the model. Section 4 concludes the merits and drawbacks of the
roposed model.
s Materials 191 (2011) 69–82

2. Two-phase accident analysis model

This section presents a two-phase accident analysis model to
assess the contribution of HOFs in both qualitative and quantitative
manner.

The two-phase accident analysis model is shown in Fig. 1. The
proposed model taps on the joint capabilities of HFACS and BN for
the purpose of investigating HOFs in accidents.

• Phase one is a qualitative analysis model of HOFs and their rela-
tionships. This phase utilizes HFACS to identify a hierarchy of
HOFs causing accidents. The output of this phase provides the
input for the second phase of the model.

• Phase two constructs a quantitative analysis model of the HOFs
using BN. The CPTs of BN are elicited by integrating fuzzy AHP
with a decomposition method to quantify the degree of rela-
tionships among HOFs. And then, BN inferences are performed
to prioritize the importance of HOFs identified in the first Phase.

2.1. 6-Step accident analysis model

The model is made up of 6 steps including: “Define”, “Ana-
lyze”, “Node”, “Graphic”, “Elicit” and “Reasoning” that briefly called
“DANGER”. Here, each step is explained in details:

(1) Define. This step is to clearly define accidents. The scope of acci-
dents and conditions under which the accidents occur should
be clearly stated. A statement describing the accident should be
produced. For instance, “collision between a ship and shuttle
tanker at night under poor visibility” states the accident of con-
cern (ship and shuttle tank collision) and the conditions (night
time, poor visibility).

(2) Analyze. This step utilizes HFACS to identify various HOFs,
ranging from active errors of operators to latent errors in
organization. In general, HFACS has a four-level hierarchical
structure. Level 1, which is the “unsafe acts” level, consists of
active errors by the operators. Errors in this layer directly lead
to the accident, and thus are the most visible to investigators.
With the “unsafe acts” errors listed in level 1, experts can pro-
ceed to investigate the “preconditions for unsafe acts” errors
in level 2 that influences the HOFs of level 1. After level 2 is
completed, level 3 “unsafe supervision” can be identified with
final leading to level 4 “organizational influence”. Therefore,
beginning investigations at level 1 allows a progressive probing
of the HOFs at higher levels. This process pushes investigators
to address latent failures at higher levels of the HFACS model,
which tend to be overlooked in accident analysis. The output of
this step is a 4-level hierarchy of HOFs. Utilizing HFACS effec-
tively requires understanding the definitions of different type
of HOFs at each level. A selected list of HOFs is provided in
Appendix A.1.

(3) Nodes. This step converts the hierarchy of HOFs identified in
step 2 into a hierarchy of variables (nodes). Thereafter, states
are defined for the nodes to indicate various values the variables
can take. For instance, a HOF can be converted to a variable with
2 states (“yes” and “no”). A 3-state variable (“high”, “medium”
and “low”) is also possible depending on the required depth of
the accident analysis.

(4) Graphic. With a hierarchy of nodes and states defined, a BN rep-
resenting the relationships among HOFs can be constructed.
The relationships depicted in HFACS will be mapped onto a BN
via its graphical representation with edge-connecting nodes. In
(5) Elicit. With the graphical structure of BN, this step is eliciting
CPT for all the nodes. In the elicitation procedure, the relative
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Accident

Phase 1: Analysis with HFACS
• Define the accident of concern
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Fig. 1. The proposed a

priority weights are derived using fuzzy AHP. Fuzzy AHP is an
extension of the traditional AHP methodology that incorporates
fuzzy comparison ratios c̃ij . With such pair-wise comparisons,
fuzzy AHP is effectively utilized to convert linguistic variables
to probability values. For example, to determine the probabil-
ity of one node at states S1, S2 and S3, precise values need to be
given for the conditional probabilities in AHP, which are more
difficult for experts to estimate. Instead, in fuzzy AHP, it is easier
to give linguistic evaluation scale of pair-wise comparisons by
questions such as “comparing states Si and Sj, which one is more
probable to occur and how much more?” In addition, it is noted
that as the number of parent nodes grows, the elicitation pro-
cess may become complicated. In this paper, the decomposition
method that allows domain experts to elicit CPT by considering
each parent node separately is applied to reduce this complex-
ity. Details about using fuzzy AHP and decomposition method
for CPT elicitation are elaborated in Section 2.2

6) Reasoning. The last step of the model is BN inference from
which safety intervention strategies can be derived. After all
the CPTs are elicited, the quantitative analysis can be performed
via Bayesian inference. The type of Bayesian inference depends
on the specific goals of each accident analysis. For example, the
probability of accident can be calculated if the prior probabil-
ity of HOFs is known. The relative contribution of HOFs to the
accident can also be investigated, which is indicated by the pos-
terior conditional probability of each node. Finally, with these
quantitative results, safety intervention measures can be sug-
gested to prevent the accident reoccurring

.2. CPT elicitation by integrating fuzzy AHP with a
ecomposition method

CPT elicitation has been known to be a complicated issue due
o the large number of judgments required to fully quantify the
elationships in the BN. For a binary node with n parents, 2n condi-

ional probabilities are required. The lack of data related with HOFs
rompts for CPT elicitation via expert judgments. However, expert

udgments are subjected to biases [31], especially when encounter-
ng a large BN. The integration of AHP and a decomposition method
t analysis framework.

can reduce subjective biases and help domain experts to elicit the
CPT in an efficient manner [32]. However, the conventional AHP
may not be able to truly reflect human cognitive processes, espe-
cially for the situation when it is difficult for experts to estimate the
precise values. In these cases, fuzzy AHP enables domain experts
to avoid giving precise probability for the CPTs. Instead they give
triangular fuzzy number to perform pair-wise comparisons of the
states according to their relative occurrence probability [33]. This
section gives an illustration on how to integrate fuzzy AHP with a
decomposition method for the elicitation of CPT.

2.2.1. Prior probabilities for a node without parents
Suppose a node X has k states (S1, S2, . . ., Sk) without parents. To

elicit prior probabilities for each state of X, it is required to deter-
mine w = [w1, w2, . . . , ws, . . . , wk], where ws is the probability of
X at state Ss. Traditionally, ws is specified directly by experts, using
their knowledge and experiences. When the number of states is
small, such a method may be efficient. With the increase of states,
simultaneously estimating probabilities of all the states inevitably
involve inaccuracies.

An alternative way is using triangular fuzzy number to per-
form pair-wise comparisons between states for generating their
probabilities. Because there are only two instead of multiple states
considered simultaneously in a pair-wise comparison, it should be
much easier to provide fuzzy linguistic scale of comparison than the
direct estimation of probabilities. Fuzzy AHP is also a useful tool for
dealing with uncertainties [34]. The prior probability of each state
can be determined by the following pair-wise comparison matrix
[35]:

A =

1 c̃12 · · · c̃1k

c̃21 1 · · · c̃2k
...

... · · · · · ·
c̃k1 c̃k2 · · · 1

(1)
where c̃ij is a triangular fuzzy number to show the probability com-
parison of Si over Sj:

c̃ij = (lij,mij, uij) (2)
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Table 1
Fuzzy scale in AHP.

Linguistic scales Triangular fuzzy scale Triangular fuzzy
reciprocal scale

Just equal (1, 1, 1) (1, 1, 1)
Equally probable (1/2, 1, 3/2) (2/3, 1, 2)
Weakly probable (1, 3/2, 2) (1/2, 2/3, 1)
Strongly more probable (3/2, 2, 5/2) (2/5, 1/2, 2/3)
Very strongly more probable (2, 5/2, 3) (1/3, 2/5, 1/2)
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Table 2
Corresponding comparison matrix of P(X = Ss/T = tp).

T is at state p S1 S2 · · · Sk wp

S1 c̃11 c̃21 · · · c̃1k wp1

S2 c̃21 c̃22 · · · c̃2k wp2

· · · · · · · · · · · · · · · · · ·
Sk c̃k1 c̃k1 · · · c̃kk wpk

Table 3
Conditional probability table for the node X with one parent T.

State of node T

State of node X

t1 t2 . . . tm

S1 w11 w21 . . . wm1

S2 w12 w22 . . . wm2

. . . . . . . . . . . . . . .
Absolutely more probable (5/2, 3, 7/2) (2/7, 1/3, 2/5)

˜ij is a fuzzy linguistic scale that is specified by asking domain
xperts questions like “comparing states Si and Sj, which one is
ore likely to occur and how much more?” Domain experts answer

hese questions using the fuzzy linguistic scale provided in Table 1
36].

If there is more than one expert, the following equation can be
sed to aggregate the opinions of the experts:

˜ij = 1
n

(c̃1
ij + c̃2

ij + · · · + c̃t
ij + c̃n

ij) (3)

here n is the number of experts.
Perform the fuzzy addition operation of

∑k
j=1c̃j

i
(i =

, 2, . . . , k) like that:

i =
k∑

j=1

c̃j
i
=
(∑k

i=1
li,
∑k

i=1
mi,

k∑
i=1

ui

)
(4)

The value of fuzzy synthetic extent with respect to ith object is
efined as [29]:

i =
( ∑n

j=1lij∑n
j=1lij +

∑n
k=1,k /= i

∑n
j=1ukj

,

∑n
j=1mij∑n

k=1

∑n
j=1mkj

,

∑n
j=1uij∑n

j=1uij +
∑n

k=1,k /= 1

∑n
j=1lkj

)
(5)

If A is a perfectly consistent comparison matrix, fuzzy
eight vector can be precisely characterized by w′ =

S1, S2, . . . , Si, . . . , Sn)T . Otherwise, the weight vectors of A
an be derived through the solution of the following constrained
onlinear optimization model [24]:

in j =
n∑

i=1

n∑
j=1

((ln wL
i − ln wU

j − ln lij)
2 + (ln wM

i − ln wM
j − ln mij)

2

+ (ln wU
i − ln wL

j − ln uij)
2
) (6)

.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wL
i

+
∑n

j=1,j /= 1wU
j

≥ 1,

wU
i

+
∑n

j=1,j /= 1wL
j

≥ 1,∑n
i=1wM

i
= 1,∑n

i=1(wL
i

+ wU
i

) = 2,

0 < wL
i

≤ wM
i

≤ wU
i

.

The model is solved using GAMS program, which is shown in
ppendix B. The optimum solution to the above model forms nor-
alized fuzzy weights
= (wL
i , wM

i , wU
i ) i = 1, . . . , n. (7)

The fuzzy weight vector is a fuzzy number. Therefore, it is nec-
ssary to employ a nonfuzzy ranking method for fuzzy numbers
Sk w1k w2k . . . wmk

to compare the states. In other words, the procedure of defuzzi-
fication should be done to locate the Best Nonfuzzy Performance
(BNP) value. Such related common methods include mean of maxi-
mal, center of area (COA) and a-cut. Among these methods, utilizing
COA method to find out BNP is simpler and more practical. Also,
there is no need to bring in the preferences of any evaluators, so it
is used in this paper. The BNP value of the fuzzy number wi can be
found by the following equation:

BNPwi = [(wU
i

− wL
i
) − (wM

i
− wL

i
)]

3
+ wL

i ∀i = 1, . . . , n. (8)

The normalized weight BNPwi is the prior probability of the ith
state of node X.

2.2.2. Conditional probabilities for a node with one parent
Suppose a node X (with k states S1, S2, . . ., Sk) has one parent T

(with m states t1, t2, . . ., tm). Let wp = [wp1, wp2, . . ., wpk], where wps

is the probability of X at state S given parent T at state p (p = 1, 2, . . .,
m and s = 1, 2, . . ., k). When node T is at state tp, the corresponding
comparison matrix is shown in Table 2. After wps = (S = 1, 2, . . ., k) is
computed, P(X = Ss|T = tp) = wps can be set.

Since node T has m states, m pair-wise comparison matrices for
each state of T should be constructed. For each matrix, the question
“if node T is at state tp, comparing states Si and Sj of X, which one
is more likely to occur?” will be evaluated to specify c̃ij . And then
the m pair-wise comparison matrices can be solved individually
just like the computation of prior probabilities for a node with no
parent shown in Section 2.2.1. All the m vectors wp (as shown in
Table 3) will be calculated, which are the elements of the CPD for
the node X with one parent T.

2.2.3. Conditional probabilities for a node with multiple parents
A Node X has k states (S1, S2, . . ., Sk). The node X has n parents,

T(1), T(2), . . ., T(j), . . ., T(n). The node T(j) has the states of T(j)
1, T(j)

2,
. . ., T(j)t(j) (tj is the state number of node T(j); j = 1, . . ., n).

It will be difficult for experts to directly estimate the probability
of each state of X conditional on the combination of the states of its
parents, which is defined by the following equation:

P(X = Si|T (1) = T (1)
pj

, T (2) = T (2)
pj

, . . . , T (n) = Tn
pj)

(i = 1, 2, . . . , k; pj = 1, 2, . . . , n) (9)
When a node A in a Bayesian Network has two parents B and C,
its probability conditional on B and C can be approximated by:

P(A|B, C) = ˛P(A|B)(A|C) (10)
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here ˛ is a normalizing constant to ensure that
∑

a∈AP(a|B, C) = 1.
According to Eq. (10), Eq. (9) can be simplified as:

(X = Si|T (1) = T (1)
pj

, T (2) = T (2)
pj

, . . . , T (n) = Tn
pj)

= ˛

n∏
j=1

P(X = Si|T (j) = T (j)
pj

) (i = 1, 2, . . . , k

pj = 1, 2, . . . , tj; j = 1, 2, . . . , n) (11)

here, ˛ is a normalizing constant to ensure that

k

i=1
P(X = Si|T (1) = T (1)

pj
, T (2) = T2

pj, . . . , T (n) = Tn
pj) = 1 (12)

In cases for nodes with multiple parents as shown in Fig. 2,
he decomposition method greatly simplifies the CPT elicitation by
llowing conditioning to be done on each parent separately.

.3. Validation using sensitivity analysis

When a new model is proposed, validation is required to ensure
ts soundness. This is especially important when subjective estima-
ion is involved in the model [37]. There are several well-accepted
alidation methods available. In this paper, a sensitivity analysis for
artial validation of the proposed model is adopted. The following
hree axioms should be satisfied [38].

xiom 1. A slight increase/decrease in the prior subjective prob-
bilities of each parent node should certainly result in the effect of
relative increase/decrease of the posterior probabilities of child
odes.

xiom 2. Given the variation of subjective probability distribu-
ions of each parent node, its influence magnitude to child node
alues should keep consistent.

xiom 3. The total influence magnitudes of the combination of
he probability variations from x attributes on the values should be
lways greater than the one from the set of x–y (y ∈ x) attributes.

. Case study

In this section, two case studies are presented to demonstrate
he application of the proposed model. Section 3.1 analyzes the
elease of cargo vapors resulting in two casualties on board of the
hemical tanker. In Section 3.2, Vinyl Chloride Monomer erupting
o form vapor cloud are analyzed to infer about critical HOFs.

.1. Release of cargo vapors resulting in two casualties on
hemical tanker

Jo Eik, a chemical tanker completed a ship-to-ship transfer at
opak Terminal Tessiside on 6 May 2009 [39]. Following the end
f ship-to-ship transfer, Jo Eik carried out mandatory pre-wash
sing portable washing equipment because the majority of the
xed washing systems were defective. The water supply hose of
ashing machine crossed through cargo tank inboard Butterworth
atch (an opening on the deck of a vessel opened when clean-

ng or ventilating the tanks), which remained open. As the cargo
ank was washed, water mist containing cargo vapors escaped
hrough the open hatch as the tank’s atmosphere was agitated. The
apors accumulated around the Butterworth hatch in which was an
nidentified enclosed space. After the final pre-wash of the cargo
anks, a deck rating noticed a strong pungent smell before climb-

ng down the ladder to shut off the power to the pump, but he did
ot wear respiratory protection. The deck rating lost consciousness
nd slumped due to exposure to the toxic crude sulphate turpen-
ine vapor, containing hydrogen sulphide. The chief officer, who
s Materials 191 (2011) 69–82 73

attempted a rescue without wearing respiratory protection, lost his
sense of smell and was unable to speak. Another deck rating who
accompanied the chief officer suffered effects of vapor inhalation
but managed to escape.

3.1.1. Applying the proposed model
(1) Define the accident clearly

After reviewing the accident report from marine accident
investigation branch (MAIB), the accident is defined as “Inhala-
tion of hazardous vapor by crew due to the discharge of
poisonous cargo vapor.”

(2) Analyze with HFACS
Working on the four-level hierarchy structure discussed ear-

lier, level 1 “unsafe acts” identifies the HOFs which directly lead
to the accident. Followed by level 2 “preconditions for unsafe
acts”, the purpose of level 2 is seeking out the conditions that
result in the HOFs at level 1. The analysis process continues
to level 3 “unsafe supervision” and ends at level 4 “organiza-
tional influences”, which identifies the fundamental causes of
the accident. The list of HOFs generated from the first accident
is shown in Table 4.

(3) Nodes and states of the identified HOFs
The HOFs identified in step 2 are converted to the nodes of

BN. After that, states are defined for each node according to the
real conditions and the required depth of accident analysis. The
states of each node are shown in the third column of Table 4.

(4) Graphical representation with BN
With the nodes and states defined, the BN of “Inhalation of

hazardous vapor by crew due to the discharge of poisonous
cargo vapor” is constructed as shown in Fig. 3.

(5) Elicit CPT for the nodes of BN
With the graphical structure of BN, this step requires the

elicitation of CPT for the nodes. The experts we invited for elic-
itation process are a group of four experts. The first one is a full
professor of Shanghai Jiaotong University, who is an expert of
maritime safety. The second one is an experienced engineer of
Great ship Global Offshore Service Company in Singapore. The
third one is an associate professor of fuzzy reliability from Goa
College of Engineering. The fourth one is an assistant profes-
sor of safety engineering from China University of Petroleum.
Discussing the real conditions of the case study, they elicit
the values for each pair-wise comparison matrix. After all the
comparison matrixes are estimated, the CPTs are elicited by
integrating fuzzy AHP with decomposition method as shown in
Section 2.2. As an example, the calculation of CPT for the node
“Not check equipment defective” is presented in Appendix B.
After all CPTs are assigned, the quantitative analysis can be
performed using Bayesian inference.

(6) Inference with BN
Given the occurrence of “Inhale vapor”, a backward inference

can be performed to calculate the posterior probabilities of each
node to identify the important HOFs. The posterior probabilities
of the HOF nodes are shown in Fig. 4. These posterior probabil-
ities can be compared with their original prior probabilities to
give an indication of the relative contribution of the HOFs. Such
as, the HOF with the highest percentage change from prior to
posterior probability indicates that it is sensitive to the occur-
rence of the accident.

3.1.2. Sensitivity analysis and results
Sensitivity analyses are conducted in this section to validate the

proposed model. The importance degree of each HOF regarding to

the node “Inhale vapor” can be assessed using entropy reduction
(mutual information). Intuitively, mutual information measures
the information that X and Y share: it measures how much knowing
one of these variables reduces the uncertainty about the other.
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Table 4
Hierarchy of human and organizational errors in the first accident.

Nodes/errors Descriptions States

Level 0: accidents
Inhale hazardous vapor Inhalation of hazardous cargo vapor by crew while washing tank Yes, no
Level 1: unsafe acts
Open Butterworth hatch Open P10 Butterworth hatch to let washer water hose passed through Yes, no
No BA/wrong BA Not wear any breathing apparatus (BA) when go into hazardous

atmosphere/Check wearing an inappropriate BA
Not locate sources of smell Not investigate and locate the gas source causing the smell timely
Not test atmosphere Not test the atmosphere before going into hazardous atmosphere
Level 2: preconditions for unsafe acts
Unaware of cargo’s danger Not be warned of the hazards posed by cargo contents Yes, no
Using unsuitable equipment Wash tank using portable washing equipment contrary to the vessel’s P&A manual

instructions
Complacent attitude Overly confident about dangers or one’s actions High, medium, low
Wrong risk assessment Identify wrongly or insufficiently the hazards of cargo and recommending the

wrong or insufficient precautions
Level 3: unsafe supervision
Not check equipment defective Failed to check fixed washing system defective High, medium, low
Deficient training rescuers acting on instinct rather than knowledge and training
Not provide specific MSDS Not provide the cargo specific MSDS/Used Wrong MSDS Yes, no
Inadequate brief not brief the crew about the likely risk and necessary precautions
Not provide instructions There were no specific instructions on board for handling H2S cargoes
Failed to identify unsafe the dangers posed by the presence of H2S were not identified
Level 4: organizational influences
Not enforcing safety standard Available guidance and procedures discipline are not followed strictly/various

documentation, including checklists were not complied with
High, medium, low

Ineffective emergency drill Locations where similar accidents might occur are not identified when planning
drills.

Insufficient check Not performing or insufficient checks. For example inspection checklists did not
specifically target the tank washing equipment

No guidance standard Vopak Terminal did not provide guidance or set any limitations on open tank
washing/no specific instructions for handling cargoes
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Ignore mutual aid messages Terminal’s investigation of mutu
No pre-arrival conference A further pre-arrival conference

Formally, the mutual information of two random variables X and
can be defined as:

(X; Y) =
∑

y ∈ Y

∑
x ∈ X

p(x, y) log2
p(x, y)

p(x)p(y)
(13)

here p(x, y) is the joint probability distribution function of X and Y,
nd p(x) and p(y) are the marginal probability distribution functions
f X and Y respectively.

The prior probability, posterior probability and mutual informa-
ion of each HOF are compared as shown in Table 5, from which,
e can deduce the following conclusions.

The posterior probability of the node
Not enforcing safety standard” has the larger incre-
ent than other nodes of level 4 given the accident

ccurrence. This suggests that the occurrence of the
ccident is likely due to not enforcing safety stan-
ard. In addition,“Not provide instructions”,“Not provide

pecific MSDS”,“Using unsuitable equipment”, “Compla-
ent attitude”, “Open butterworth hatch”, “No BA wrong BA”
nd “Not locate sources of smells” also contribute significantly to
he occurrence of the accident.
messages was not conducted Yes, no
ot carried out

While the 5% step by step reduction of prior probability of
each organizational node varies from 5% to 30%, the reduction
rates of accident probability are computed, which are shown in
Fig. 5, from which, it can be seen that the probability of acci-
dent has the largest reduction when the prior probability of
“Not enforcing safety standard” decreases the same as other fac-
tors. It highlights that “Not enforcing safety standard” is the most
important organizational factor.

Given the occurrence of the accident, the change rate from
prior probability to posterior probability of each organizational
factor is represented in Fig. 6. From Fig. 6, we can see that the
posterior probability of “Not enforcing safety standard” has the
largest change rate. This is consistent with the inference made
earlier that the occurrence of accident is sensitive to the node
“Not enforcing safety standard”.

With the BN inference mentioned above, the follow-
ing recommendations of safety measures (corresponding
to above major accident contributors) are given to avoid

recurrence:

• All crews should be enforced and eligible to strictly following the
safety standards and requirements. Some example of the stan-
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Fig. 3. Graphical representation of “inh

dards could be that safety precaution must be taken when crew

is in some enclosed spaces.
The pre-arrival conference must be held before the load-
ing/unloading operation and adequate brief should be provided.
All the relevant information of cargo and related hazards and

Fig. 4. Posterior probabilities of the human fa
pour” accident with prior probabilities.

safety procedures should be covered at the pre-arrival confer-

ence.

• A specific MSDS of cargoes should be provided, which need
contain the comprehensive information to determine special pro-
cedures for ensuring the safety of the crew.

ctor given the first accident happened.
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Table 5
Mutual information of prior probability and posterior probability for each HOF.

Organizational factor Prior probability (%) Posterior probability (%) Change rate of probability (%) Mutual information

Node of level 4: organizational influences
Insufficient check 70 70.4 0.571 0.000449
Ineffective emergency drill 60 60.4 0.667 0.000403
Not enforcing safety standard 60 63.8 6.333 0.04462
No prearrival conference 90 90.5 0.556 0.001423
No guidance standard 50 50.9 1.800 0.002796
Ignore mutual aid messages 90 90.1 0.111 3.982e−005
Node of level 3: unsafe supervision
Not check equipment defective 46.8 48.3 3.205 0.00739
Deficient training 58.7 61.2 4.259 0.01919
Inadequate brief 88.5 90.4 2.147 0.01851
Not provide specific MSDS 91.9 94.5 2.829 0.0392
Not provide instructions 69.3 73.9 6.638 0.0591
Failed to identify unsafe 90 90.3 0.333 0.00087
Node of level 2: preconditions for unsafe acts
Using unsuitable equipment 74.3 80 7.672 0.0933
Complacent attitude 80.0 84.7 5.875 0.0545
Unaware of cargo danger 94.1 96.5 2.550 0.0412
Wrong risk assessment 74.4 78.1 4.973 0.0426
Node of level 1: unsafe acts
Open butterworth hatch 74.5 80.1 7.517 0.0941
No BA wrong BA 93.6 98.3
Not test atmosphere 96.1 97.9
Not locate sources of smells 93.6 97.2

Fig. 5. Effects of changes in prior probabilities of each HOF on the probabilities of
the first accident.
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ility in the first accident.

The defective equipment, such as the defective fixed washing
system, should be repaired or renewed as soon as possible.
Operator must wear appropriate breathing apparatus when deal-
ing with hazardous cargo.
The mutual aid messages should be immediately investigated to
identify the risk avoiding complacent attitude.
Detailed instruction should be provided for managing of unfamil-

iar cargoes and cargo operation.
It should be arranged for crews to carry out additional training in
rescue operations to enlighten the crisis consciousness and the
right contingency measures.
5.021 0.131
1.873 0.0339
3.846 0.0815

• Cargo operations should be kept as “closed operations” to prevent
vapors spilling and releasing. For this case, leaving the Butter-
worth hatches open directly causes the release of cargo vapors.

• Comprehensive check covering all phases should be carried out
to ensure the cargo operation is conducted safely.

• The full briefing should be given to the chief officer after receiv-
ing the cargo stowage plan. Followed by the briefing, all items
in the safety checklists in the Cargo Information Book have to be
completed.

3.2. Vinyl Chloride Monomer erupted to form a large cloud of
vapor cloud

The gas carrier Coral Acropora was preparing to start to dis-
charge her cargo into shore cargo tanks when there was an escape
of Vinyl Chloride Monomer (VCM) [37]. On arrival at the berth,
a cargo surveyor had boarded the vessel and, after calculating
the cargo quantity, he had asked the chief officer to run a cargo
pump in each tank as he took cargo samples. The chief offi-
cer had not been aware of the need for sampling and he had
not made preparations or planned for it. However, he acceded
to the request without including the operation in the discharge
plan. The chief officer opened the valves on the aft tank, which
allowed recirculation of the cargo in that tank. He then started
the aft tank cargo pump using local controls sited on the tank
top.

The cargo surveyor began filling his sample cylinder from the
designated tank sampling point. After a few minutes, the cargo
alarm klaxon sounded on deck. The chief officer walked around
the tank dome and, using a local control, stopped the klaxon from
sounding. He assumed the alarm indicated that the cargo pump
had tripped, but he could not be certain without going to the
cargo office. A few moments later, the klaxon sounded again. The
chief officer then noticed a large cloud of white vapor advancing
down the deck towards him. He quickly ran aft, taking hold of
the cargo surveyor, hitting the emergency shutdown (ESD) button
as he passed by. They managed to reach the shelter provided by

the accommodation before the cloud overtook them. A little less
than 600 kilograms of liquid and vapor VCM had erupted from the
vessel’s forward cargo tank mast riser after the forward tank had
become over-pressurized.
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Table 6
Hierarchy of HOFs in the second accident.

Nodes/errors Descriptions States

Level 0: accidents
Eruption to form vapor cloud Vinyl Chloride Monomer had erupted to form a large cloud of white vapor cloud. Yes, no
Level 1: unsafe acts
Override safety feature It was common to use override switch during operations. Yes, no
Not wear PPE Personnel did not wear proper personal protective equipment.
No closed loop sampling The cargo survey not used “closed loop sampling”.
No double valve segregation The chief officer habitually left manual valves open for expediency.
Slow response to alarm Not manning cargo office led to alarms not being positively and immediately identified.
Not stop pump promptly The chief officer did not stop the cargo pump when he became aware of the first deck cargo alarm.
Level 2: preconditions for unsafe acts
Poor liaison A poor liaison between vessel’s staff and those on the terminal, both parties carrying out their roles in

isolation.
High, medium, low

Not uncover deficiencies Gas carrier inspections and vetting did not uncover the ship or shore deficiencies in the operational
procedures.

Overload Cargo tanks were loaded in excess of maximum allowable. Yes, no
No preparation work Chief officer could not plan ahead and not prepared.
Insufficient sample point The aft dome of the vessel’s after tank is not equipped with sufficient sample points.
No pre-operational check Checklists were not completed prior to the operation starting.
Level 3: unsafe supervision
No vetting inspection Neither EVC, nor Agility, made any other vetting inspections High, medium, low
Lack information The shore emergency response was initially hampered by a lack of information from the vessel Yes, no
Ineffective inspection The owner’s inspection program was not effective in uncovering and halting poor operational

practices.
Not maintain oversight No-one maintaining an oversight of the cargo operations
No forewarned cargo sampling The chief officer did not have prior warning that cargo sampling, necessitating the use of cargo pumps,

was required.
Not manned cargo office The cargo office was not manned during the critical stages of cargo operations
Level 4: organizational influences
Not enforcing safety standard The safe system existed on paper in the vessel’s safety management system, but was not put into

practice.
High, medium, low

Inappropriate safety awareness The chief officer’s decision not to go to the cargo office to determine what had caused the alarm,
indicated an inappropriate level of safety awareness.

External muster point Muster point was outside on deck Yes, no
No cargo control room There is not a cargo control room.
No communication means The vessel had no means of direct communication with the terminal
No experienced staff Neither EVC nor Agility employed experienced permanent staff to call on to undertake such
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Inexperienced chief officer Newly promoted and relatively inexperien

.2.1. Applying the proposed model
After reviewing the accident report from MAIB, the accident is

efined as “Eruption to form vapor cloud”. The 6 “DANGER” steps
f the proposed model are carried out to analyze the critical HOFs
f the second accident. The list of HOFs is shown in Table 6. With
he nodes and states defined, the BN of “Eruption to form vapor
loud” is built in Fig. 7. After all the CPTs are elicited by integrating
uzzy AHP with decomposition method as shown in Section 2.2, the
uantitative analysis can be performed using Bayesian inference.
he posterior probabilities of the HOF nodes are shown in Fig. 8.

.2.2. Sensitivity analysis and results
Sensitivity analyses are conducted to validate the proposed

odel. The importance degree of HOFs regarding to the node “Erup-
ion to form vapor cloud” can be assessed using entropy reduction
mutual information).

The prior probability, posterior probability and mutual informa-
ion of each HOF are compared as shown in Table 7.

From Table 7, we can see that the posterior probability
f “Not enforcing safety standard” among the nodes of level 4
ncrease most largely given the accident occurrence. It again high-
ights the need of enforcing all crews to strictly follow safety
tandard. Among the nodes of level 3, the posterior probability of
he node “No forewarned cargo sampling” has the largest incre-
ent given the accident occurs. This suggests that the occurrence
f the accident is likely due to not providing prior warning of cargo
ampling. Among the nodes of level 2, the posterior probability
f the node “Not uncover deficiencies” and “No preparation work”
asters and chief officers sail together.

have the largest increment when the accident occurs. It
suggests “Not uncover deficiencies” and “No preparation work”
contribute significantly to the occurrence of the accident. The
posterior probability of the node “No double valve segregation”
and “Slow response to alarm” have the larger increase among
the nodes of level 1. It highlights the need of maintain-
ing double valve segregation and immediate responding to
alarm.

While the 5% step by step reduction of prior probability of
each organizational node varies from 5% to 30%, the reduc-
tion rates of accident probability are calculated as shown in
Fig. 9. From Fig. 9, it can be seen that the probability of acci-
dent has the largest reduction when the prior probability of
“Not enforcing safety standard” decreases the same as other fac-
tors. It again highlights that “Not enforcing safety standard” is the
most important HOF. Thus, the probability of “Eruption to form
vapor cloud” accidents would drastically be reduced by enforcing
safety standard. Given the occurrence of the accident, the change
rate from prior probability to posterior probability of each orga-
nizational factor at different prior probability is represented in
Fig. 10.

From Fig. 10, we can see that the posterior probability
of “Not enforcing safety standard” has the largest change rate
from prior probability. This is consistent with the inference

made earlier that the occurrence of accident is sensitive to
the node “Not enforcing safety standard”, and hence there is
reason to believe that the model is stable to input variabil-
ity.
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Fig. 7. Graphical representation of the second accident with prior probabilities.
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Fig. 8. Posterior probabilities of the hum

From the sensitivity analysis, we can know that the model sat-
sfies the three axioms presented in Section 2.3, which allows us
o conclude that the inference made earlier is reliable. From above
N inference, important safety measures corresponding to above
ajor accident contributors can be derived to prevent the similar
ccidents from recurring:

All crews should strictly follow the safety standards and put the
safety management system into practice.
tor given the second accident happened.

• Have the vessel advised about cargo sampling prior to arrival and
the chief office should prepare well.

• The charterer should make vetting inspections and employ per-
manent staff with marine gas carrier experience to call on to
undertake such inspections.
• When a tanker arrives alongside a terminal, she should do a lot of
preparation work before loading or discharging cargo. The ship
owner’s operating instructions must be carefully written to avoid
putting undue pressure on crews.
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Table 7
Mutual information of prior probability and posterior probability for each HOF.

Organizational factor Prior probability (%) Posterior probability (%) Change rate of probability (%) Mutual information

Node of level 4: organizational influences
No experienced staff 90 90.3 0.333 2.003e−005
Not enforcing safety standard 80 80.8 1 0.0001506
No communication means 90 90.2 0.222 6.779e−005
Inexperienced chief officer 70 70.1 0.143 2.206e−005
Inappropriate safety awareness 60 60.4 0.667 1.726e−005
No cargo control room 95 95 0 2.878e−007
Node of level 3: unsafe supervision
No vetting inspection 88.3 89.3 1.133 0.000379
Ineffective inspection 80.6 82 1.737 0.000223
Lack information 85 85.7 0.824 0.000186
Not maintain oversight 83 83.5 0.602 2.376e−005
No forewarned cargo sampling 85.4 85.9 0.586 0.0006016
Not manned cargo office 81.7 82 0.367 7.37e−005
Node of level 2: preconditions for unsafe acts
Overload 89 90.1 1.236 0.000507
Poor liaison 83.5 85.4 2.275 9.378e−005
Not uncover deficiencies 83.6 87.9 5.144 0.00268
No preparation work 82.3 82.8 0.608 0.00218
insufficient sample point 85.6 85.7 0.117 0.000332
No pre operational check 84.7 86 1.535 0.00172
Node of level 1: unsafe acts
Override safety feature 85.2 89.5 5.047 0.00864
Not wear PPE 74.8 89.4 19.52 7.771e−005
No closed loop sampling 82.2 82.6 0.487 0.00258
No double valve segregation 82.6 90.3
Slow response to alarm 74.9 76.8
Not stop pump promptly 84.9 85.2
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ware which facilitates the application of the proposed model. In
ig. 10. Effect of change in prior probability of organizational factor on posterior
robability in the second accident.

Maintain double valves segregation system to avoid cargo trans-
fer from one tank to the other as long as one of the 98% alarm and
shutdown system is placed in override position.
The chief officer should take immediate steps to stop the opera-
tion when the cargo alarm sound and ascertain the true nature of

the alarm.
Avoid overriding the 98% alarm/shutdown system by limit full
cargo allowance.
9.322 0.0139
2.537 0.013
0.353 0.00901

• The ship shore checklist should be completed by the loading mas-
ter and the chief officer prior to cargo operations.

• All personnel involved must wear appropriate protective equip-
ment in case there is a risk from toxic gas or a liquid spill is present
on deck.

• Evaluate the performance of the chief officer and estab-
lish further actions to monitor performance and/training
needs.

• Means for (emergency) communication between the
vessel and the terminal is established as first priority
and emergency contact numbers are available before
commencing any cargo operations including cargo
sampling.

4. Conclusion

From the application of the model to those two case
studies, it can be concluded that the model is useful in inves-
tigating HOFs for the derivation of safety interventions and
“Not enforcing safety standard” generally contribute mostly to the
accident occurrence.

The application of HFACS allows a complete identification of
HOFs, both active and latent, that are leading causes of accidents.
The hierarchal structure of HFACS encourages investigators to seek
out latent HOFs, which are often neglected in accident investiga-
tions. The model enables a quantitative assessment by using BN. BN
enhances the ability of HFACS by allowing investigators or experts
to quantify the degree of relationships among the HOFs. Fuzzy AHP
is used to reduce the subjective biases by avoiding the need of
defining exact probability for the nodes’ states. The decomposition
method that is applied in CPT elicitation reduces the complexity by
allowing probability calculation conditioning on each of the parent
nodes separately.

Future work is suggested to be done on developing specific soft-
addition, the elicitation of CPT is still subjective and time consum-
ing. Other methods of reducing subjective biasness and improving
efficiency in CPT elicitation deserved to be further explored. Build-
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ppendix A. Background information

.1. Human Factors Analysis and Classification System

HFACS is a reliable human error model that is able to assist inves-
igators in the identification of HOFs and their relationships in an
ccident. Human error is usually defined as any deviation from the
erformance of a specified or prescribed sequence of actions [2].
FACS describes human error at four levels: (1) the unsafe acts of
perators, (2) preconditions for unsafe acts, (3) unsafe supervision
4) organizational influences. In other words, the HFACS frame-
ork goes beyond the simple identification of what an operator
id wrong to provide a clear understanding of the reasons why the
rror occurred in the first place. In this way, errors are viewed as
onsequences of system failures or symptoms of deeper systemic
roblems; not simply the fault of the employee working at the
pointy end of the spear” [40].

.2. Bayesian Network

A BN is a Directed Acyclic Graph (DAG), where N = {(V, E), P}.
and E are the nodes and edges respectively. P is the joint prob-

bility distribution over V [41]. The nodes represent discredited
andom variables and arcs represent probabilistic dependencies
etween the variables. As they handle uncertainty explicitly, they
re suitable for examining systems containing complex and uncer-
ain interactions [42].

Each of the nodes in V represents a variable and the directed
dges in the set E that connect nodes represent the probabilis-
ic dependency. Each node has a number of possible values called
states”. Also, each of the nodes in the network is quantified with a
PT, which consists of the conditional probabilities given the states
f the parent nodes. For each possible state of a node, conditional
robability is specified with respect to all possible combinations of
tates of its parent nodes. The probabilities describing these rela-
ionships between the nodes were obtained through structured
xpert elicitations [43].

.3. Fuzzy AHP
AHP is extensively used as a relative weight estimation tech-
ique in many areas [44]. AHP has the additional advantage of
eing easy to explain to the experts who need assess the differ-

able A.1
onditional probability of “Not check equipment defective” given “Insufficient check” (h

Not check equipment defective High Mediu

S1 (1, 1, 1) (1/2, 1, 3/2) (5/2, 3, 7/2) (1, 1, 1
S2 (2/3, 1, 2) (1, 1, 1) (5/3, 3, 7) (1, 3/2
S3 (2/7, 1/3, 2/5) (1/7, 1/3, 3/5) (1, 1, 1) (2, 5/2
w 0.324 0.343 0.106 0.200
s Materials 191 (2011) 69–82

ent alternatives in a systematic way [45]. However, AHP involves
human subjective evaluation that necessitates the use of decision-
making under uncertainty. Due to the complexity and uncertainty
involved in real world, it is sometimes unrealistic or even impossi-
ble to require exact judgments. Experts usually find that it is more
confident to give interval judgments than fixed value judgments
[46].

Inability of AHP to deal with the imprecision and subjective in
the pair-wise comparison process has been improved by fuzzy AHP.
Fuzzy AHP, which is an extension of AHP, is a useful tool for calculat-
ing the priority weight. Fuzzy AHP allowed experts to use linguistic
expressions or fuzzy numbers to reflect the vagueness of human
thought [47]. There are many fuzzy AHP methods, among which the
newest modified fuzzy logarithmic least squares method is adopted
in this paper.

Appendix B. Elicitation of CPT

Given the different state of node “Insufficient check”, the con-
ditional probability of node “Not check equipment defective” are
shown in Table A.1.

When the state of node “Insufficient check” is high, the condi-
tional probability of “Not check equipment defective” is calculated
according to Eq. (5). The solution model is shown as follows:
objective. . . f = e = sum((i, j)$(ord(i) ne

ord(j)),
(log(wl(i)) − log(wu(j)) − log(l(i,
j)))*(log(wl(i)) − log(wu(j)) − log(l(i,
j))) + (log(wm(i)) − log(wm(j)) − log(m(i,
j)))*(log(wm(i)) − log(wm(j)) − log(m(i,
j))) + (log(wu(i)) − log(wl(j)) − log(u(i,
j)))*(log(wu(i)) − log(wl(j)) − log(u(i,
j))));

first(i). . . wl(i) + sum(j$(ord(j) ne ord(i)),
wu(j)) = g = 1;

second(i). . . wu(i) + sum(j$(ord(j) ne ord(i)),
wl(j)) = l =1;

third. . . sum(i, wm(i)) = e= 1;
fourth. . . sum(i, wl(i) + wu(i)) = e = 2;
fifth(i). . . wu(i) = g = wm(i);
sixth(i). . . wm(i) = g = wl(i);
Model fuzzy/all/;
option nlp = minos;
solve fuzzy using nlp

minimizing f;
file results/results.txt/
put results;
loop(i, put i.tl, @12,

wl.l(i):8:5, wm.l(i):8:5,
wu.l(i):8:5/);

The optimum solution to the model is

w =
[

(0.317, 0.43, 0.5)
(0.335, 0.43, 0.578)

(0.105, 0.143, 0.168)

]

Substitute w into Eq. (6), we can get:BNPwi =
(0.324, 0.343, 0.106)

Given the different states of node “Insufficient check”, the con-

ditional probability of node “Not check equipment defective” are
shown in Table A.2. Integrating the above calculation method with
the decomposition method, the conditional probabilities of node
“Not check equipment defective” are shown in Table A.3.

igh).

m Low

) (1/2, 2/3, 1) (1/3, 2/5, 1/2) (1, 1, 1) (2/3, 1, 2) (1, 1, 1)
, 2) (1, 1, 1) (1/3, 3/5, 1) (1/2, 1, 3/2) (1, 1, 1) (1/2, 1, 3/2)
, 3) (2, 5/2, 3) (1, 1, 1) (2, 5/2, 3) (4/3, 5/2, 6) (2, 5/2, 3)

0.207 0.407 0.233 0.120 0.470



Y.F. Wang et al. / Journal of Hazardous Materials 191 (2011) 69–82 81

Table A.2
Conditional probability of “Not check equipment defective” given different states of “Insufficient check”.

Not check equipment defective High Medium Low

S1 (1, 1, 1) (1, 3/2, 2) (5/2, 3, 7/2) (1, 1, 1) (1/2, 2/3, 1) (1, 1, 1) (1, 1, 1) (1/3, 1, 3/2) (5/2, 3, 7/2)
S2 (1/2, 2/3, 1) (1, 1, 1) (5/4, 2, 7/2) (1, 3/2, 2) (1, 1, 1) (1, 3/2, 2) (2/3, 1, 3) (1, 1, 1) (5/3, 3, 21/2)
S3 (2/7, 1/3, 2/5) (2/7, 1/2, 4/5) (1, 1, 1) (1, 1, 1) (1/2, 2/3, 1) (1, 1, 1) (2/7, 1/3, 2/5) (2/21, 1/3, 3/5) (1, 1, 1)
w 0.438 0.270 0.136 0.263 0.353 0.263 0.274 0.351 0.091

Table A.3
Conditional probability of “Not check equipment defective” given “Insufficient check” and”Not enforcing safety standard”.

Insufficient check Not enforcing safety standard High Medium Low

High High 0.5706 0.3717 0.0577
High Medium 0.3642 0.5168 0.1190
High Low 0.4054 0.5504 0.0442
Medium High 0.4414 0.2807 0.2779
Medium Medium 0.2263 0.3136 0.4601
Medium Low 0.3330 0.4414 0.2256
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